NAME: (Print in ink) \qquad

STUDENT NUMBER: \qquad

SEAT NUMBER: \qquad

SIGNATURE: (in ink) \qquad
(I understand that cheating is a serious offense)

INSTRUCTIONS TO STUDENTS:

This is a 3 hour exam. Please show your work clearly.

No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.

This exam has a title page, 10 pages of questions and also 1 blank page for rough work. Please check that you have all the pages. You may remove the blank page if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left hand margin beside the statement of the question. The total value of all questions is 100 points.

Answer all questions on the exam paper in the space provided beneath the question. If you need more room, you

Question	Points	Score
1	8	
2	6	
3	8	
4	8	
5	9	
6	12	
7	11	
8	10	
9	6	
10	6	
11	8	
12	8	
Total:	100	

INDICATE that your work is continued.
[8] 1. Find the distance between the two lines $\frac{x+1}{2}=\frac{y-3}{3}=z+4$ and $x=1-t, \quad y=-2 t, \quad z=-3+2 t$.
[6] 2. Find an equation for the tangent plane to the surface $x^{3}+3 y^{2}-3 z^{2}=3$ at the point $(3,1,3)$.
[8] 3. Let $u(x, y)=f\left(x^{3}+y^{2}\right)+g\left(x^{3}+y^{2}\right)$ such that f and g are differentiable functions. Show that

$$
2 y \frac{\partial u}{\partial x}-3 x^{2} \frac{\partial u}{\partial y}=0
$$

[8] 4. Given that the equations

$$
e^{x}+\sin y=u^{2}-v^{2}, \quad \text { and } \quad e^{y}+\sin x+2 u^{2}+v^{2}=0
$$

define u and v as functions of x and y find $\frac{\partial u}{\partial x}$. Simplify your answer.

DATE: April 22, 2008
PAPER \# 534
EXAMINATION: Engineering Mathematical Analysis 1

FINAL EXAMINATION
PAGE: 3 of 10 TIME: 3 hours COURSE: MATH $\overline{2130}$ EXAMINER: G.I. Moghaddam
[9] 5. Evaluate the following double integral.

$$
\int_{0}^{1} \int_{0}^{\frac{1}{2}(1-y)} e^{x-x^{2}} d x d y
$$

UNIVERSITY OF MANITOBA

DATE: April 22, 2008
PAPER \# 534
FINAL EXAMINATION
PAGE: 4 of 10
TIME: 3 hours
OOURS:
EXAMINER: G.I. Moghaddam
[12] 6. Find the absolute maximum and the absolute minimum of the function

$$
f(x, y)=x^{2}+2 x y-y^{2}
$$

on the region bounded by $x=\sqrt{1-y^{2}}, \quad y=x$ and $y=0$.

UNIVERSITY OF MANITOBA

DATE: April 22, 2008
FINAL EXAMINATION
PAGE: 5 of 10
TIME: 3 hours
EXAMINATION: Engineering Mathematical Analysis 1 COURSE: MATH $\overline{2130}$

EXAMINER: G.I. Moghaddam
[11] 7. Consider a thin plate with mass per unit area $\rho(x, y)=x^{2}+y$ such that the edges of the plate are defined by the parabola $y=(x-2)^{2}$ and the line $y=x$. Set up but do not evaluate double integrals for each of the following.
(a) First moment of the plate about the y-axis.
(b) Moment of inertia of the plate about the line $4 x-3 y+1=0$.
(c) Centre of mass of the plate.
[10] 8. Consider the double integral

$$
\iint_{R} \sqrt{1+\left[\frac{\partial}{\partial x}\left(y^{2}-x^{2}\right)\right]^{2}+\left[\frac{\partial}{\partial y}\left(y^{2}-x^{2}\right)\right]^{2}} d A
$$

where R is the region between the two circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
(a) Simplify the integral.
(b) Give a (natural) geometrical interpretation of the integral.
(c) Rewrite the integral in terms of polar coordinates and then evaluate the integral.

UNIVERSITY OF MANITOBA

DATE: April 22, 2008
PAPER \# 534
FINAL EXAMINATION
PAGE: 7 of 10
EXAMINATION: Engineering Mathematical Analysis 1
TIME: 3 hours
COURSE: MATH $\overline{2130}$ EXAMINER: G.I. Moghaddam
[6] 9. Set up but do not evaluate a set of iterated integrals to evaluate

$$
\iiint_{V} d V
$$

where V is a region in \mathbf{R}^{3} bounded by the planes

$$
z=0, \quad z=3 x, \quad x+z=4, \quad y=0, \quad y=2 .
$$

[6] 10. (a) Find the spherical coordinates of the point P with cartesian coordinates $(\sqrt{2}, \sqrt{2}, 2 \sqrt{3})$.
(b) Find the cylindrical coordinates of the point Q with spherical coordinates $\left(2 \sqrt{2}, \frac{\pi}{6}, \frac{\pi}{4}\right)$.

DATE: April 22, 2008
PAPER \# 534
EXAMINATION: Engineering Mathematical Analysis 1

FINAL EXAMINATION
PAGE: 9 of 10
TIME: 3 hours COURSE: MATH 2130
[8] 11. Find the volume of the region inside the cylinder $x^{2}+y^{2}=1$ and between the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$.
(Hint: you may use cylindrical coordinates system.)
[8] 12. A solid half ball (semisphere) V of radius 3 has density ρ depending on the distance \mathfrak{R} from the centre of the base disk. The density is given by $\rho=k(6-\mathfrak{R})$ where k is a constant. Use spherical coordinates system to find the mass of the half ball.

