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1.[8] Find the distance between the two lines
x + 1

2
=

y − 3

3
= z + 4 and

x = 1− t, y = −2t, z = −3 + 2t.

2.[6] Find an equation for the tangent plane to the surface x3 + 3 y2
− 3 z2 = 3 at

the point (3, 1, 3).
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3.[8] Let u(x, y) = f(x3 + y2) + g(x3 + y2) such that f and g are differentiable
functions. Show that

2y
∂u

∂x
− 3x2 ∂u

∂y
= 0.

4.[8] Given that the equations

ex + sin y = u2
− v2, and ey + sin x + 2u2 + v2 = 0

define u and v as functions of x and y find
∂u

∂x
. Simplify your answer.
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5.[9] Evaluate the following double integral.

∫ 1

0

∫ 1

2
(1−y)

0

ex−x2

dx dy
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6.[12] Find the absolute maximum and the absolute minimum of the function

f(x, y) = x2 + 2xy − y2

on the region bounded by x =
√

1− y2, y = x and y = 0.
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7.[11] Consider a thin plate with mass per unit area ρ(x, y) = x2 + y such that the
edges of the plate are defined by the parabola y = (x− 2)2 and the line y = x.
Set up but do not evaluate double integrals for each of the following.

(a) First moment of the plate about the y−axis.

(b) Moment of inertia of the plate about the line 4x− 3y + 1 = 0.

(c) Centre of mass of the plate.
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8.[10] Consider the double integral

∫∫

R

√

1 +
[ ∂

∂x
(y2
− x2)

]2

+
[ ∂

∂y
(y2
− x2)

]2

dA

where R is the region between the two circles x2 + y2 = 1 and x2 + y2 = 4.

(a) Simplify the integral.

(b) Give a (natural) geometrical interpretation of the integral.

(c) Rewrite the integral in terms of polar coordinates and then evaluate the
integral.
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9.[6] Set up but do not evaluate a set of iterated integrals to evaluate

∫∫∫

V

dV

where V is a region in R3 bounded by the planes

z = 0, z = 3x, x + z = 4, y = 0, y = 2.
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10.[6] (a) Find the spherical coordinates of the point P with cartesian coordinates
(
√

2,
√

2, 2
√

3).

(b) Find the cylindrical coordinates of the point Q with spherical coordinates

(2
√

2,
π

6
,

π

4
).
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11.[8] Find the volume of the region inside the cylinder x2 + y2 = 1 and between the
plane z = 0 and the paraboloid z = x2 + y2.
(Hint: you may use cylindrical coordinates system.)
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12.[8] A solid half ball (semisphere) V of radius 3 has density ρ depending on the
distance R from the centre of the base disk. The density is given by ρ = k(6−R)
where k is a constant. Use spherical coordinates system to find the mass of
the half ball.


